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Early classical mechanical simulators

Antykythera Mechanism
circa 200 BC



Digital computer simulators

Without the computer-based simulation, the material
culture of late-twentieth-century microphysics is not
merely inconvenienced – It does not exist. […] Machines
[…] are inseparable from their virtual counterparts –
all are bound to simulations.

–Peter Galison

From Image and Logic: 
A material culture of microphysics (1997)



The era of universal molecular classical computer simulation“[H]e produced a paper tape of his 
whole computer program and 
unrolled it along the length of the 
chemical lecture bench. There, in 
one roll, was something, of which 
one could ask a chemical question at 
one end and it would produce an 
answer at the other! . . . most of the 
audience probably thought the 
demonstration bizarre. But it was 
prescient” 



Enter quantum computing
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Enter quantum computing



The quantum simulation way

quantum system quantum model
(quantum information)

Quantum  information 
processor

classical 
information

E= -192.0492
Hartree



Disruption and quantum simulation

Figure adapted from M. Head-Gordon, M. Artacho,  Physics Today  4 (2008)
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Exact simulation via quantum computers

Quantum advantage*

When a quantum computer outperforms a classical computer
at a practical stask

Predictive rather than explanatory simulation of matter

* Different to ”quantum supremacy”



Quantum computers intro

classical bit

0

1

quantum bit

Bloch sphere

quantum bit 

Superposition

Entanglement

Collapse upon measurement

quantum computer

Collection of controllable qubits

Subject to decoherence

Ability for quantum error correction



Quantum computation



Quantum gates and circuits

Hadamard gate

Single qubit gates

Rotations

Two qubit gates Subroutines

Controlled-not (CNOT) gate Quantum Fourier Transform



Quantum computing with quantum circuits in one slide

Information is stored on qubit registers

Depth

F : {0, 1}n ! {0, 1}m if |cF (x1,...,xm)|2 = 1� ✏
<latexit sha1_base64="mvVOXwPf8VJeJ3owjfFlPvkSSH0="></latexit><latexit sha1_base64="mvVOXwPf8VJeJ3owjfFlPvkSSH0="></latexit><latexit sha1_base64="mvVOXwPf8VJeJ3owjfFlPvkSSH0="></latexit><latexit sha1_base64="mvVOXwPf8VJeJ3owjfFlPvkSSH0="></latexit>

Input Output

Example of a universal gate set

RM = exp(�i✓M/2)
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Quantum compujting for Chemistry circa 2005

Quantum phase estimation algorithm

A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, M. Head-Gordon, Science (2005)  Full quantum circuit: J. D. Whitfield, et. al.,                     
Mol. Phys. (2011) Error correction: N. Cody Jones, J. D. Whitfield, et al.   New. J. Phys.(2012)



Noisy intermediate  scale quantum (NISQ) computers

Left figure: Daniel Gottesman Preskill, 2018 arXiV:180100862



Noisy intermediate  scale quantum (NISQ) algorithms

Cao et al, Chem Rev 2019 119 10856 (2019) McArdle et al, Rev Mod Phys 92, 015003 (2020), Bharti et al, arXiV:2101.08448 (2021)  
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A universal fault-tolerant quantum computer that can solve efficiently problems such as
integer factorization and unstructured database search requires millions of qubits with
low error rates and long coherence times. While the experimental advancement towards
realizing such devices will potentially take decades of research, noisy intermediate-scale
quantum (NISQ) computers already exist. These computers are composed of hundreds
of noisy qubits, i.e. qubits that are not error-corrected, and therefore perform imperfect
operations in a limited coherence time. In the search for quantum advantage with these
devices, algorithms have been proposed for applications in various disciplines spanning
physics, machine learning, quantum chemistry and combinatorial optimization. The goal
of such algorithms is to leverage the limited available resources to perform classically
challenging tasks. In this review, we provide a thorough summary of NISQ compu-
tational paradigms and algorithms. We discuss the key structure of these algorithms,
their limitations, and advantages. We additionally provide a comprehensive overview
of various benchmarking and software tools useful for programming and testing NISQ
devices.
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Variational quantum algorithms

Variational 
quantum 

eigensolver
Peruzzo et al. 

Nat Comm (2014)

Minimizing energy
Quantum 
adiabatic 

optimization 
algorithm

Farhi et al. (2014)

Quantum 
autoencoders Maximizing 

compression

Romero, et al. 
Quantum Sci. 
Technol. (2017)

Variational
Quantum

Generators

4

on the principles of HQC computing. Consider a real
data source that outputs observations of an unknown
distribution, represented by the variable x 2 RN . The
purpose of our variational quantum generator is to pro-
duce classical samples xFake that mimic the observed dis-
tribution. To achieve this, we propose the construction
depicted in Figure 3, that includes two variational cir-
cuits, a quantum encoding circuit R(z) acting on r qubits
and the generator circuit G(⇥g) acting on n qubits with
n � r.

The quantum encoding circuit, which we describe in
detail in the next subsection, takes as input a classical
random variable z ⇠ pz(z); z 2 RO as a parameter and
prepares the state R(z)|0⌦ri = |�(z)i. This is the equiv-
alent to the random source employed in classical GANs,
where the space of the variable z would correspond to
the latent space in the language of generative models.
Correspondingly, the manifold of states {|�(z)i} would
constitute the quantum latent space. The second cir-
cuit, G(⇥g) acts as the generator model, mapping from
the latent manifold to the manifold of observed data x:
G(⇥g)|�(x)i = | (z,⇥g)i. To map this state to a clas-
sical value we employ a measurement decoding scheme,
where the sample P 2 RM is generated by measuring the
expectation value of a fixed set of observables expressed
as strings of Pauli strings {Pi}i=1,··· ,M :

P = [hP1i, hP2i, · · · , hPM i] (2)
where hPii = h (x;⇥g)|Pi| (x;⇥g)i. (3)

P is then transformed by a classical function to generate
xFake:

xFake = fg (P ;⌦g) , (4)
(5)

where ⌦g represents a vector of real parameters associ-
ated to the classical function. In what follows, we de-
scribe each of the components of VQG in greater detail.

1. Quantum encoding circuit

The process of encoding classical inputs in a quantum
state can be interpreted as applying a nonlinear feature
map that maps data to a quantum Hilbert space, a pro-
cess also called quantum feature map or quantum encod-
ing, as described by Schuld et al. [15]. The quantum
circuit implementing this mapping on a digital quantum
computer corresponds to the quantum feature circuit or
encoding circuit. We distinguish between two classes of
quantum encoding in this paper:

1. Amplitude encoding : In the first case, a vector
x 2 RN , corresponding to the data to be encoded,
undergoes a transformation under a feature map:
 : RN ! C2n that maps the information to a
quantum state in n qubits. Since the length of the

FIG. 3. Circuit architecture of the proposed quantum gener-
ator, comprising a circuit that generates states from a latent
space (z) using the variational circuit G(⇥g). The random
variable z is mapped to a quantum state using the quantum
encoding circuit R. By measuring a fixed set of operators on
the generated state, the quantum circuit produces a classical
vector P = [hP1i, · · · , hPM i], that passes through a classical
function f(P ;⌦g), to produce the fake sample xFake.

data vector is not necessarily a power of 2, the fea-
ture map might require some padding and appro-
priate normalization. Once the corresponding in-
put state is obtained, we need to prepare this state
on the quantum register of n qubits, |�(x)i using a
preparation circuit Sx such that Sx|0i⌦n = | (x)i.

2. Variational encoding : In this case, a fixed vari-
ational circuit E(fE(x)) encodes the data by in-
putting the classical information as the circuit pa-
rameters. Here, f is a classical feature map: fE :
RN ! RM , such as the final input state is prepared
as E(f(x))|0i⌦n = |�(x)i.

Notice that in amplitude encoding, the vector is
mapped classically to a quantum state. Consequently,
we need to find the corresponding circuit that prepares
the state to a desired accuracy. This can be done us-
ing general purpose compilation routines for preparing
general quantum states on quantum registers [45–48]. In
the case of amplitude encoding, the number of qubits re-
quired scales as O(log(N)) while the depth of the circuit
for state preparation is O(N) [47], with N being the size
of the classical vector to be mapped. The number of gates
required for state preparation of these circuits (In the or-
der of thousands for ten qubits [48]) might constitute a
challenge for NISQ devices.

In contrast, the variational encoding strategy encodes
the classical vector as the parameters of a fixed varia-
tional circuit. This implies that the circuit layout em-
ployed for all the input vectors is the same, which sim-
plifies compilation. It is also likely that the errors in-
troduced by this encoding procedure are mostly system-
atic and therefore can be more easily mitigated. Most
of the variational encodings proposed so far employ cir-
cuits with O(N) qubits and only O(1) circuit depth
[14, 15, 17, 19, 22], which makes encoding more amenable
to NISQ devices at the cost of increasing requirement in

Minimizing loss 
function

Maximizing cut size

Romero, et al. 
arXiv:1901.00848

(2019)
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TABLES OF APPLICATIONS

Algorithm/Application Proposed implementations

Variational quantum eigensolver (VQE) and related solvers
VQE (McClean et al., 2016; Peruzzo et al., 2014; Wecker et al., 2015)
Adaptive VQE (Grimsley et al., 2019b; Ryabinkin et al., 2018b; Sim et al., 2020)
IQAE (Bharti, 2020; Bharti and Haug, 2020a)
Krylov approaches (Huggins et al., 2020; Jouzdani and Bringuier, 2020; Stair et al., 2020)

Imaginary time evolution
(Bharti and Haug, 2020b; McArdle et al., 2019a; Motta et al., 2020; Sun
et al., 2020c)

VQE for excited states
Folded spectrum (Peruzzo et al., 2014; Ryabinkin et al., 2018a)
Orthogonally constrained VQE (Higgott et al., 2019; Kottmann et al., 2020b; Lee et al., 2018)
Subspace expansion and
linear-response based (McClean et al., 2017; Ollitrault et al., 2020; Takeshita et al., 2020)
Subspace-search VQE (Nakanishi et al., 2019)
Multistate contracted VQE (Parrish et al., 2019a)
Fourier transform of evolutions (Aleiner et al., 2020; Roushan et al., 2017)
WAVES (Santagati et al., 2018)
Adiabatically-Assisted (Garcia-Saez and Latorre, 2018; McClean et al., 2016)

Hamiltonian simulation

Variational quantum simulator
(Endo et al., 2020c; Kubo et al., 2020; Li and Benjamin, 2017; McArdle
et al., 2019a; Yuan et al., 2019)

Subspace variational quantum
simulator (Heya et al., 2019)
Variational fast forwarding (Cirstoiu et al., 2020; Commeau et al., 2020)
Quantum assisted simulator (Bharti and Haug, 2020b)

Quantum information scrambling and thermalization
Scrambling (Holmes et al., 2020; Joshi et al., 2020; Landsman et al., 2019)
Thermal state (Verdon et al., 2019b)

Open quantum systems
Generalized variational quantum
simulator (Endo et al., 2020c; Liu et al., 2020b; Yuan et al., 2019)
Generalized quantum assisted
simulator (Haug and Bharti, 2020)
Trotter simulation (Hu et al., 2020; Koppenhöfer et al., 2020)

State preparation

Non-equilibrium steady state
(Yoshioka et al., 2020)(Endo et al., 2020b; Jaderberg et al., 2020; Kreula
et al., 2016)

Gibbs-state (Chowdhury et al., 2020; Endo et al., 2020c; Haug and Bharti, 2020)
Many-body ground state (Ho and Hsieh, 2019; Ho et al., 2019; Wauters et al., 2020a)

Quantum autoencoder

Quantum autoencoder
(Bondarenko and Feldmann, 2020; Bravo-Prieto, 2020; Huang et al., 2020a,b;
Pepper et al., 2019; Romero et al., 2017)

Quantum computer-aided design
Optical setups (Kottmann et al., 2020c)
Superconducting circuits (Kyaw et al., 2020b)

Table I NISQ algorithms for Many-body physics and chemistry applications from Sec. V.A.

Bharti et al, arXiV:2101.08448 (2021)  
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Algorithm/Application Proposed implementations

Supervised learning

Quantum kernel methods
(Havlíček et al., 2019; Kusumoto et al., 2019; Schuld et al., 2020b; Schuld
and Killoran, 2019)

Variational quantum classifiers (VQC)
(Farhi and Neven, 2018; Lloyd et al., 2020; Mitarai et al., 2018; Pérez-Salinas
et al., 2020a; Schuld et al., 2020a,c; Vidal and Theis, 2019)

Encoding strategies in VQA (Cervera-Lierta et al., 2020; Mitarai et al., 2019)

Quantum reservoir computing

(Chien and Whitfield, 2020; Fujii and Nakajima, 2017; Ghosh et al., 2019;
Mitarai et al., 2018; Nakajima et al., 2019; Negoro et al., 2018; Nokkala
et al., 2020)

Supervised QUBO classifier (Li et al., 2018)
Unsupervised learning

Quantum Boltzmann machines
(QBM) (Amin et al., 2018; Kieferová and Wiebe, 2017; Zoufal et al., 2020)

Quantum circuit Born machines
(QCBM)

(Alcazar et al., 2020; Benedetti et al., 2019a; Coyle et al., 2020a; Hamilton
et al., 2019; Leyton-Ortega et al., 2019; Liu and Wang, 2018; Rudolph et al.,
2020)

Quantum generative adversarial
networks (QGAN)

(Dallaire-Demers and Killoran, 2018; Hu et al., 2019; Lloyd and Weedbrook,
2018; Romero and Aspuru-Guzik, 2019; Situ et al., 2020; Zeng et al., 2019)

Reinforcement learning

Reinforcement learning

(Albarrán-Arriagada et al., 2020; Cárdenas-López et al., 2018; Chen et al.,
2020; Crawford et al., 2016; Jerbi et al., 2019; Lamata, 2017; Lockwood and
Si, 2020a,b; Yu et al., 2019)

Table II NISQ algorithms for machine learning applications from Sec. V.B.

Algorithm/Application Proposed implementations

Max cut
(Bravyi et al., 2019; Farhi et al., 2014; Hastings, 2019; Headley et al., 2020;
Otterbach et al., 2017)

Max clique (Arrazola and Bromley, 2018; Banchi et al., 2020a)
Maximum independent set (Choi et al., 2020; Saleem, 2020; Utkarsh et al., 2020)
Max hafnian (Arrazola et al., 2018)
Vertex cover (Cook et al., 2019)
Exact cover (Bengtsson et al., 2020; Garcia-Saez and Latorre, 2018; Vikstål et al., 2020)
Knapsack (de la Grand’rive and Hullo, 2019)
Graph multi-coloring (Oh et al., 2019)

Table III NISQ algorithms for combinatorial optimization from Sec. V.C.

Algorithm/Application Proposed implementations

Factoring (Anschuetz et al., 2019; Karamlou et al., 2020)
SVD (Bravo-Prieto et al., 2020; Wang et al., 2020c)
Linear systems (Bravo-Prieto et al., 2019; Huang et al., 2019; Xu et al., 2019b)

Non-linear differential equations
(Gaitan, 2020; Haug and Bharti, 2020; Kyriienko et al., 2020; Lubasch et al.,
2020)

Table IV NISQ algorithms for numerical solvers applications from Sec. V.D.

Algorithm/Application Proposed implementations

Portfolio optimization
(Bouland et al., 2020; Cohen et al., 2020; Egger et al., 2020a; Marzec, 2016;
Rosenberg et al., 2016; Venturelli and Kondratyev, 2019)

Fraud detection (Egger et al., 2020a,b; Zoufal et al., 2020)
Option pricing (Kubo et al., 2020)

Table V NISQ algorithms for finance applications from Sec. V.E

Bharti et al, arXiV:2101.08448 (2021)  
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Algorithm/Application Proposed implementations

Supervised learning

Quantum kernel methods
(Havlíček et al., 2019; Kusumoto et al., 2019; Schuld et al., 2020b; Schuld
and Killoran, 2019)

Variational quantum classifiers (VQC)
(Farhi and Neven, 2018; Lloyd et al., 2020; Mitarai et al., 2018; Pérez-Salinas
et al., 2020a; Schuld et al., 2020a,c; Vidal and Theis, 2019)

Encoding strategies in VQA (Cervera-Lierta et al., 2020; Mitarai et al., 2019)

Quantum reservoir computing

(Chien and Whitfield, 2020; Fujii and Nakajima, 2017; Ghosh et al., 2019;
Mitarai et al., 2018; Nakajima et al., 2019; Negoro et al., 2018; Nokkala
et al., 2020)

Supervised QUBO classifier (Li et al., 2018)
Unsupervised learning

Quantum Boltzmann machines
(QBM) (Amin et al., 2018; Kieferová and Wiebe, 2017; Zoufal et al., 2020)

Quantum circuit Born machines
(QCBM)

(Alcazar et al., 2020; Benedetti et al., 2019a; Coyle et al., 2020a; Hamilton
et al., 2019; Leyton-Ortega et al., 2019; Liu and Wang, 2018; Rudolph et al.,
2020)

Quantum generative adversarial
networks (QGAN)

(Dallaire-Demers and Killoran, 2018; Hu et al., 2019; Lloyd and Weedbrook,
2018; Romero and Aspuru-Guzik, 2019; Situ et al., 2020; Zeng et al., 2019)

Reinforcement learning

Reinforcement learning

(Albarrán-Arriagada et al., 2020; Cárdenas-López et al., 2018; Chen et al.,
2020; Crawford et al., 2016; Jerbi et al., 2019; Lamata, 2017; Lockwood and
Si, 2020a,b; Yu et al., 2019)

Table II NISQ algorithms for machine learning applications from Sec. V.B.

Algorithm/Application Proposed implementations

Max cut
(Bravyi et al., 2019; Farhi et al., 2014; Hastings, 2019; Headley et al., 2020;
Otterbach et al., 2017)

Max clique (Arrazola and Bromley, 2018; Banchi et al., 2020a)
Maximum independent set (Choi et al., 2020; Saleem, 2020; Utkarsh et al., 2020)
Max hafnian (Arrazola et al., 2018)
Vertex cover (Cook et al., 2019)
Exact cover (Bengtsson et al., 2020; Garcia-Saez and Latorre, 2018; Vikstål et al., 2020)
Knapsack (de la Grand’rive and Hullo, 2019)
Graph multi-coloring (Oh et al., 2019)

Table III NISQ algorithms for combinatorial optimization from Sec. V.C.

Algorithm/Application Proposed implementations

Factoring (Anschuetz et al., 2019; Karamlou et al., 2020)
SVD (Bravo-Prieto et al., 2020; Wang et al., 2020c)
Linear systems (Bravo-Prieto et al., 2019; Huang et al., 2019; Xu et al., 2019b)

Non-linear differential equations
(Gaitan, 2020; Haug and Bharti, 2020; Kyriienko et al., 2020; Lubasch et al.,
2020)

Table IV NISQ algorithms for numerical solvers applications from Sec. V.D.

Algorithm/Application Proposed implementations

Portfolio optimization
(Bouland et al., 2020; Cohen et al., 2020; Egger et al., 2020a; Marzec, 2016;
Rosenberg et al., 2016; Venturelli and Kondratyev, 2019)

Fraud detection (Egger et al., 2020a,b; Zoufal et al., 2020)
Option pricing (Kubo et al., 2020)

Table V NISQ algorithms for finance applications from Sec. V.E

Bharti et al, arXiV:2101.08448 (2021)  
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Algorithm/Application Proposed implementations

Quantum foundations
Bell inequalities (Alsina and Latorre, 2016)
Contextuality (Kirby and Love, 2019; Kirby et al., 2020)
Variational consistent history (VCH) (Arrasmith et al., 2019)

Quantum optimal control

Quantum optimal control
(Dive et al., 2018; Li et al., 2017a; Lu et al., 2017; Magann et al., 2021;
Policharla and Vinjanampathy, 2020)

Quantum metrology

Quantum metrology
(Beckey et al., 2020; Kaubruegger et al., 2019; Koczor et al., 2020; Ma et al.,
2020; Meyer et al., 2020)

Fidelity estimation
Fidelity estimation (Cerezo et al., 2020a)

Quantum error correction (QEC)
Quantum variational error corrector
(QVECTOR) (Johnson et al., 2017)
Variational circuit compiler for QEC (Xu et al., 2019a)

Nuclear physics

Nuclear physics

(Avkhadiev et al., 2020; Dumitrescu et al., 2018; Hauke et al., 2013; Klco
et al., 2018; Kokail et al., 2019; Liu and Xin, 2020; Martinez et al., 2016;
Roggero et al., 2020)

Entanglement properties
Schmidt decomposition (Bravo-Prieto et al., 2019; Wang et al., 2020a)
Multipartite entanglement (Pérez-Salinas et al., 2020b)
Entanglement spectrum (Cerezo et al., 2020b; LaRose et al., 2019)

Table VI NISQ algorithm for other applications listed in Sec. V.F.

Bharti et al, arXiV:2101.08448 (2021)  



Variational Quantum Algorithms (VQAs)
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A general overview of VQAs:

Peruzzo, McClean, et al.  Nature Communications 5 4213 (2014)



The Variational Quantum Eigensolver



Variational Quantum Eigensolver

Peruzzo, McClean, et al.  Nature Communications 5 4213 (2014)



Generators: Hermitian Operators

Circuits from unitaries

Fermionic operators are mapped to Pauli strings

Variational optimization

How are things done under the hood in a VQE?



The fast-moving VQE algorithm development landscape.

Excited-state methods

Measurement reduction

Circuit ansatze

Adaptive methods

New UCC methods

Optimization methods

Academic groups Artur Izmaylov, Nick Mayhall, Keisuke Fuji, Simon Benjamin, …
Industry Zapata Computing, Google, IBM, OTI Lumionics, …



Example: The Measurement reduction race

Total: Pauli strings in a Hamiltonian
Qubit-wise commuting: Izmaylov, et al. JCP (2020).
Fully commuting: Izmaylov, et al. JCTC (2020).
Google+Berkeley: Huggins, et al. arXiv (2019).
Cartan subalgebra: T.C. Yen, A.F. Izmaylov, arXiv (2020).

Measurement reduction

Plot : TC Yen and Artrur Izmaylov (UofT)



The Tequila Package

https://github.com/aspuru-guzik-group/tequila

Kottmann, et al. Quantum Science and Technology (2021) In Press

https://github.com/aspuru-guzik-group/tequila


The Tequila Package: Hello world
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The Tequila Package: Benzene example

https://github.com/aspuru-guzik-group/tequila

https://github.com/aspuru-guzik-group/tequila


The Tequila Package: How it works

https://github.com/aspuru-guzik-group/tequila

https://github.com/aspuru-guzik-group/tequila


Multi-resolution analysis Variational Quantum Eigensolver3

tum algorithms, the second-quantized Hamiltonian can
then be transformed to a qubit Hamiltonian using var-
ious encodings [40–42]. Canonically, when global ba-
sis sets are used, the second-quantized Hamiltonian
in Eq. (3) is constructed by the occupied and virtual
Hartree-Fock orbitals. This can be interpreted as pre-
optimizing the orbitals within a fixed set of basis func-
tions by a mean-field method. In this work, we con-
struct the second-quantized Hamiltonian from the oc-
cupied Hartree-Fock orbitals solved variationally within
a multiresolution analysis (MRA) representation [10]
combined with directly determined pair-natural or-
bitals [32] optimized by MP2. In other words, we are
pre-optimizing the orbitals with a correlated method
and within a basis-set-free adaptive representation. In
Fig. 1, we illustrate the construction of the qubit Hamil-
tonians using the basis set and the MRA-PNO based
basis-set-free approach. Conceptually, the biggest dif-
ference to the canonical construction is, that our ap-
proach does not rely on globally fixed sets, but rather
optimizes the orbitals directly and system-specific. This
allows the freedom to adapt to the molecule at hand, in
order to find a close-to-optimal compact representation.

III. METHODOLOGY

Most MRA based optimization protocols in quantum
chemistry solve a Schrödinger-like differential equation

✓
�2

2
+ V

◆
| i = E | i (4)

by transforming it into an integral equation using the
bound-state Helmholtz Green’s function GE as kernel

 (r) = �2

Z
d r GE(r, r

0)V (r0) (r0) , (5)

leading to an iterative optimization of the wavefunc-
tion. [43, 44] Usually, this leads to a self-consistent
coupled set of equations, where the potential V depends
on the wavefunctions. We refer to Refs. [10] for the
initial description within the HF and density func-
tional approaches and a recent review [12] for further
details on MRA based methods. The MRA-PNO-MP2
optimization, used as a surrogate model in this work,
is described in detail in Ref. [32].

In this approach, occupied and localized Hartree-Fock
orbitals are optimized according to Ref. [10], and
initial pair-specific guess functions for the PNOs are
created by multiplying monomials onto the optimized
HF orbitals. These initial PNOs further are opti-
mized according to Eq. (5), where V is determined
by the PNO-MP2 Hylleraas functional. In order to
construct the qubit Hamiltonians, we globally select

Figure 1. Constructing Molecular Qubit Hamiltoni-
ans: (Left) Representation of the spatial part of molecular
orbitals by a fixed set of atom-centered Gaussian functions.
This is a global basis set, where functions for each atom are
globally defined throughout all possible molecules. (Right)
The spatial part of the molecules is represented with mul-
tiresolution analysis (MRA) resulting in a locally adaptive
representation. Pair natural orbitals (PNOs) are directly
determined and optimized within the MRA representation
by a surrogate model (in this work MP2). Truncation of the
representation to the available qubit number is naturally
given by the occupation numbers of the PNOs.

the MRA-PNOs with the largest occupation numbers
and orthonormalize them via Cholesky decomposition.
Combined with the occupied HF orbitals, we obtain
an orthonormal set of orbitals. This set defines our
second-quantized Hamiltonian, that finally is trans-
formed to a qubit Hamiltonian using standard qubit
encodings.

Kottman, Schleich, Tamayo-Mendoza, Aspuru-Guzik J Phys. Chem. Lett. 2021, 12, 1, 663-673
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IV. INITIAL APPLICATIONS

To evaluate the accuracy and efficiency of the proposed
approach, we employ MRA-PNO-MP2 as a basis-
set-free surrogate model to the variational quantum
eigensolver. We employed the UpGCCSD model of
Ref. [45] to construct the quantum circuits. All used
model systems are chosen such that they are well
described by this ansatz, which allows to focus on
the numerical accuracy of the qubit Hamiltonians
without worrying about the quality of the ansatz. An
overview of the qubit requirements using MRA and
GBS representations is given in Tab. I, where we report
significant improvement for all systems and types of
energy metrics investigated in this work. As energy
metrics we used non-parallelity (NPE) and maximum
(MAX) errors and a reaction barrier. Non-parallelity
errors [45] are defined as the difference between the
maximal and minimal error on a given potential
energy surface. Note that, other than in Ref. [45], the
reference values are here also chosen with respect to
the underlying one-particle basis. The MRA-PNOs are
optimized according to Ref. [32] using madness[11].
Note, that in this work the MRA-PNOs were optimized
without regularizing the Coulomb singularity.

VQE calculations are performed with tequila [46] us-
ing qulacs [47] as quantum backend, the BFGS opti-
mizer of scipy [48] with a 2-point finite difference sten-
cil for the gradient and the qubit encodings of open-
fermion [49]. LCAO reference calculations are per-
formed with psi4 [50]. All VQE calculations initialize
the UpGCCSD parameters with zero (i.e. starting from
the HF reference state). Representations of Hamiltoni-
ans are abbreviated with MRA(Ne,Nq) for MRA-PNOs
and the acronym for standard LCAO basis sets. The
values in parentheses represent the number of electrons
Ne and qubits Nq (spin-orbitals). Note, that classi-
cal FCI calculations with basis sets corresponding to
large qubit Hamiltonians with 50 or more qubits are
possible, since these algorithms are not operating in
the full Fock space of the second quantized Hamilto-
nian. For simplicity, we omitted known general com-
pression schemes that allow to reduce the number of
qubits by two when combined with parity based encod-
ings [51], since these would apply to all qubit Hamil-
tonians in this work in the same way. The numerical
accuracy of the qubit Hamiltonian is independent of the
encoding. The results of this work where obtained with
the Jordan-Wigner representation, the implementation
with tequila however does support other encodings.
The qubit encoding can influence the results of possible
future demonstrations on real quantum hardware, since
it will result in different gate decomposition of the VQE
unitary and therefore will have varying properties with

System Metric Qubits/MRA Qubits/GBS More

He MAX 4 4-10 Fig. 3

Be MAX 10 10-18 Fig. 3

H2 NPE 4 20-56 Figs. 5, 4
H2 NPE 8 20-56 Figs. 5, 4
H2 NPE 20 56-120 Figs. 5, 4
H2 MAX 4 8 Figs. 5, 4
H2 MAX 8 20-56 Figs. 5, 4
H2 MAX 20 56 Figs. 5, 4

LiH NPE 12 20-38 Figs. 5, 4
LiH NPE 20 38 Figs. 5, 4
LiH MAX 12 20-38 Figs. 5, 4
LiH MAX 20 170-288 Figs. 5, 4

BH NPE 12-20 38-88 Figs. 5, 4
BH MAX 12-20 38-88 Figs. 5, 4

NH3 �E 12-18 58-100 Fig. 2

Table I. Qubit Requirements of MRA and GBS rep-
resentations: Qubit requirements for the MRA Hamiltoni-
ans used in this work compared to qubit requirements using
standard Dunning-type basis sets that achieve comparable
accuracy within different metrics. The employed metrics
are non-parallelity (NPE) and maximum (MAX) errors on
potential energy surfaces and a reaction barrier (�E).

Figure 2. Umbrella reaction of Ammonia: Energy bar-
riers in relation to qubit requirements. Results are computed
with different classical methods and the basis-set-free VQE
(UpGCCSD ansatz).

regard to the specifics of the device noise characteristics.

A. Helium and Beryllium Atom

As an initial test, we computed the energies of the
Helium and Beryllium atom, where the true energies
close to the complete basis set (CBS) limit are known
from different highly accurate numerical calculations in
the literature. [52–54] The results are shown in Fig. 3,
where we show the absolute energies w.r.t the qubit

Hydrogen molecule VQE/MRA

Kottman, Schleich, Tamayo-Mendoza, Aspuru-Guzik J Phys. Chem. Lett. 2021, 12, 1, 663-673



Mutual-Information Adaptive Unitary Coupled Cluster

Also: Qubit-Coupled Cluster by Izmaylov, and co-workers, Adapt-VQE by Mayhall and co-workers

Zhang, Kyaw, Kottmann, Degroote, Alan Aspuru-Guzik Quant. Sci. Tech.  (2021) Accepted manuscript online.

Strategy:

Leverage classical-computing
DMRG mutual information
to iteratively construct compact
entangler circuits.



The Meta Variational Quantum Eigensolver

Also: 

Cervera-Lierta, Kottman, Aspuru-Guzik arXiV:2009.13545

Strategy: Add encoding layer to learn parameterized Hamiltonians: QML + VQE hybrid.
See also: Mitarai, et al. PR Applied 11 044087 (2019)
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FIG. 1. Schematic of the meta-VQE algorithm. The top diagram represents the training part of the algorithm where the
Hamiltonian parameters ~� are encoded together with the variational parameters ~� and ~⇥. By computing the expected value of
the Hamiltonian for multiple values of ~�, we design a cost function Loss to be minimized. Once the algorithm converges to a
�opt and ⇥opt, we can use these values to obtain any hH(~�)i (meta-VQE test) or as initial values of a standard VQE algorithm
(opt-meta-VQE).

tational cost. Previous works have explored the possi-
bility of using a VQA to predict the ground state of a
Hamiltonian. In particular, Ref. [18] proposes to use an
adiabatic state preparation to design a circuit ansatz ca-
pable to do that task. However, that proves costly when
considering more than one Trotter step. We aim to fur-
ther generalize this idea by using short-depth quantum
circuits and analyze di↵erent Hamiltonians and encoding
strategies.

In this work, we address the general problems stated
above at once by proposing the meta-VQE algorithm.
A meta-VQE encodes the Hamiltonian parameters into
the first layers of the quantum circuit, dividing the cir-
cuit into two parts: encoding and processing. Next, the
meta-VQE is trained with a small set of the Hamiltonian
parameters by constructing a cost function that is a com-
bination of all expected values. Finally, the meta-VQE
has ”learned” the Hamiltonian, and we can simply intro-
duce other values for the Hamiltonian parameters into
the circuit and obtain a good estimation of the ground
state energy. If this estimation is not precise enough, we
can use the resulting circuit of the meta-VQE as a start-
ing point for a standard VQE, providing a good initial
guess and avoiding the random initialization problem, i.e.
barren plateaus [17].

This algorithm is inspired on quantum machine learn-
ing algorithms (QML) and other algorithms that use

meta-techniques [19–26]. As these algorithms propose,
we design a parametrized quantum circuit to be trained
with a set of values from a given model, in our case, a
physical Hamiltonian. We treat the meta-VQE encoding
part as a quantum neural network that learns the Hamil-
tonian encoding. The processing part guides the encoded
state towards the ground state. We observe two advan-
tages of this algorithm: i) it can be used to first explore
the ground state energies of Hamiltonian parameter space
with only a few training points and then use the result as
an initial state for a precise VQE and ii) the encoding in
VQA proofs valuable and helps these algorithms to find
the ground state.The meta-VQE can be interpreted as a
QML application for quantum simulation suited for the
NISQ era.

We present the results of this work in the following sec-
tion. First, we introduce the meta-VQE algorithm from
a general prespective. Next, we run a meta-VQE with a
spin Hamiltonian example, the 1D XXZ model, and next
with a molecular Hamiltonian example, the H4 complex.
We compare the performance of the meta-VQE with a
standard VQE with random initialization and standard
VQE with the trained parameters from the meta-VQE.
Finally, we apply this algorithm to a state-of-the-art ap-
plication: the simulation of transmon qubits in a quan-
tum computer [27]. We discuss the results and propose
further improvements of this algorithm in the Discussion



The Meta Variational Quantum Eigensolver

Cervera-Lierta, Kottman, Aspuru-Guzik arXiV:2009.13545
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FIG. 1. Schematic of the meta-VQE algorithm. The top diagram represents the training part of the algorithm where the
Hamiltonian parameters ~� are encoded together with the variational parameters ~� and ~⇥. By computing the expected value of
the Hamiltonian for multiple values of ~�, we design a cost function Loss to be minimized. Once the algorithm converges to a
�opt and ⇥opt, we can use these values to obtain any hH(~�)i (meta-VQE test) or as initial values of a standard VQE algorithm
(opt-meta-VQE).

tational cost. Previous works have explored the possi-
bility of using a VQA to predict the ground state of a
Hamiltonian. In particular, Ref. [18] proposes to use an
adiabatic state preparation to design a circuit ansatz ca-
pable to do that task. However, that proves costly when
considering more than one Trotter step. We aim to fur-
ther generalize this idea by using short-depth quantum
circuits and analyze di↵erent Hamiltonians and encoding
strategies.

In this work, we address the general problems stated
above at once by proposing the meta-VQE algorithm.
A meta-VQE encodes the Hamiltonian parameters into
the first layers of the quantum circuit, dividing the cir-
cuit into two parts: encoding and processing. Next, the
meta-VQE is trained with a small set of the Hamiltonian
parameters by constructing a cost function that is a com-
bination of all expected values. Finally, the meta-VQE
has ”learned” the Hamiltonian, and we can simply intro-
duce other values for the Hamiltonian parameters into
the circuit and obtain a good estimation of the ground
state energy. If this estimation is not precise enough, we
can use the resulting circuit of the meta-VQE as a start-
ing point for a standard VQE, providing a good initial
guess and avoiding the random initialization problem, i.e.
barren plateaus [17].

This algorithm is inspired on quantum machine learn-
ing algorithms (QML) and other algorithms that use

meta-techniques [19–26]. As these algorithms propose,
we design a parametrized quantum circuit to be trained
with a set of values from a given model, in our case, a
physical Hamiltonian. We treat the meta-VQE encoding
part as a quantum neural network that learns the Hamil-
tonian encoding. The processing part guides the encoded
state towards the ground state. We observe two advan-
tages of this algorithm: i) it can be used to first explore
the ground state energies of Hamiltonian parameter space
with only a few training points and then use the result as
an initial state for a precise VQE and ii) the encoding in
VQA proofs valuable and helps these algorithms to find
the ground state.The meta-VQE can be interpreted as a
QML application for quantum simulation suited for the
NISQ era.

We present the results of this work in the following sec-
tion. First, we introduce the meta-VQE algorithm from
a general prespective. Next, we run a meta-VQE with a
spin Hamiltonian example, the 1D XXZ model, and next
with a molecular Hamiltonian example, the H4 complex.
We compare the performance of the meta-VQE with a
standard VQE with random initialization and standard
VQE with the trained parameters from the meta-VQE.
Finally, we apply this algorithm to a state-of-the-art ap-
plication: the simulation of transmon qubits in a quan-
tum computer [27]. We discuss the results and propose
further improvements of this algorithm in the Discussion

Strategy: Add encoding layer to learn parameterized Hamiltonians: QML + VQE hybrid.
See also: Mitarai, et al. PR Applied 11 044087 (2019)
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FIG. 1. Schematic of the meta-VQE algorithm. The top diagram represents the training part of the algorithm where the
Hamiltonian parameters ~� are encoded together with the variational parameters ~� and ~⇥. By computing the expected value of
the Hamiltonian for multiple values of ~�, we design a cost function Loss to be minimized. Once the algorithm converges to a
�opt and ⇥opt, we can use these values to obtain any hH(~�)i (meta-VQE test) or as initial values of a standard VQE algorithm
(opt-meta-VQE).

tational cost. Previous works have explored the possi-
bility of using a VQA to predict the ground state of a
Hamiltonian. In particular, Ref. [18] proposes to use an
adiabatic state preparation to design a circuit ansatz ca-
pable to do that task. However, that proves costly when
considering more than one Trotter step. We aim to fur-
ther generalize this idea by using short-depth quantum
circuits and analyze di↵erent Hamiltonians and encoding
strategies.

In this work, we address the general problems stated
above at once by proposing the meta-VQE algorithm.
A meta-VQE encodes the Hamiltonian parameters into
the first layers of the quantum circuit, dividing the cir-
cuit into two parts: encoding and processing. Next, the
meta-VQE is trained with a small set of the Hamiltonian
parameters by constructing a cost function that is a com-
bination of all expected values. Finally, the meta-VQE
has ”learned” the Hamiltonian, and we can simply intro-
duce other values for the Hamiltonian parameters into
the circuit and obtain a good estimation of the ground
state energy. If this estimation is not precise enough, we
can use the resulting circuit of the meta-VQE as a start-
ing point for a standard VQE, providing a good initial
guess and avoiding the random initialization problem, i.e.
barren plateaus [17].

This algorithm is inspired on quantum machine learn-
ing algorithms (QML) and other algorithms that use

meta-techniques [19–26]. As these algorithms propose,
we design a parametrized quantum circuit to be trained
with a set of values from a given model, in our case, a
physical Hamiltonian. We treat the meta-VQE encoding
part as a quantum neural network that learns the Hamil-
tonian encoding. The processing part guides the encoded
state towards the ground state. We observe two advan-
tages of this algorithm: i) it can be used to first explore
the ground state energies of Hamiltonian parameter space
with only a few training points and then use the result as
an initial state for a precise VQE and ii) the encoding in
VQA proofs valuable and helps these algorithms to find
the ground state.The meta-VQE can be interpreted as a
QML application for quantum simulation suited for the
NISQ era.

We present the results of this work in the following sec-
tion. First, we introduce the meta-VQE algorithm from
a general prespective. Next, we run a meta-VQE with a
spin Hamiltonian example, the 1D XXZ model, and next
with a molecular Hamiltonian example, the H4 complex.
We compare the performance of the meta-VQE with a
standard VQE with random initialization and standard
VQE with the trained parameters from the meta-VQE.
Finally, we apply this algorithm to a state-of-the-art ap-
plication: the simulation of transmon qubits in a quan-
tum computer [27]. We discuss the results and propose
further improvements of this algorithm in the Discussion

Strategy: Add encoding layer to learn parameterized Hamiltonians: QML + VQE hybrid.
See also: Mitarai, et al. PR Applied 11 044087 (2019)
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Example:  H4 molecule as the 
atomic square is deformed into a 
rectangle

𝜆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∕ Å)



A feasible approach for derivatives for UCC

Kottman, Anand, Aspuru-Guzik Chemical Science (2021) In Press. Hot Article  https://doi.org/10.1039/D0SC06627C

H2 minimal basis 
4 orbital example

https://doi.org/10.1039/D0SC06627C
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Quantum Computer-Aided Design (QCAD)



Enter Sycamore

Courtesy: Google Quantum

Dated 23 Oct. 2019

Google researchers claim to have attained
“quantum supremacy” for the first time. Their
53-bit quantum computer, named Sycamore, took
200 seconds to perform a calculation that,
according to Google, would have taken the world’s
fastest supercomputer 10,000 years.



… and unconfirmed Gaussian Boson Sampling machine!



How will we simulate large-scale quantum computers?

Case study: Transmons.

• Number of transmons in a processor is 
growing exponentially

Kyaw, Menke, Sim, Sawaya, Oliver, Guerreschi, Aspuru-Guzik, arXiV:2006.03070 (2020)
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How will we simulate large-scale quantum computers?

Case study: Transmons.

• Number of transmons in a processor is 
growing exponentially

• Quantum simulation capabilities will soon 
surpass classical capacity

• Classical hardware simulation capacity hits 
roadblock just above ten transmons

• Quantum computers can simulate one physical
transmon per log!(16) = 4 data qubits in the 
computer

Future quantum computers need to be 
designed with the aid of existing quantum 

computers

Kyaw, Menke, Sim, Sawaya, Oliver, Guerreschi, Aspuru-Guzik, arXiV:2006.03070 (2020)



Digital Simulation of Transmon quantum processors

Kyaw, Menke, Sim, Sawaya, Oliver, Guerreschi, Aspuru-Guzik, arXiV:2006.03070 (2020)

Methods for simulating transmon hardware on digital quantum computers

• Encoding of the transmon Hamiltonian into Pauli strings

• Energy spectrum from variational simulations

• Gate operation from Suzuki-Trotter simulations

• Quantum simulation of large quantum computer modules



Efficient encoding of d-level Hamiltonians into Pauli Strings

N. Sawaya et al., npj Quantum Information 6, 1 (2020)

Example Conversion rules



Efficient encoding of d-level Hamiltonians into Pauli Strings

Mapped Hamiltonian can be simulated on any type of digital quantum computer 
(superconducting, ion traps, quantum optics, cold atoms, etc.)

Kyaw, Menke, Sim, Sawaya, Oliver, Guerreschi, Aspuru-Guzik, arXiV:2006.03070 (2020)



QCAD Example: Qubit Energy Levels

Y. Cao et al., Chem. Rev. 119, 10856 (2019)            O. Higgot et al., Quantum 3, 156 (2019)

Find ground-state by VQE, Determine Excited States by Variational Quantum Deflation (VQD)

physical qubit data qubits used for simulation of physical qubit

Ansatz gates: Fully-connected ion-trap qubits



QCAD Example: Qubit Energy Levels
VQD result

• VQD algorithm finds transmon energy levels to experimentally relevant accuracy
• Spectrum informs frequency range, noise sensitivity estimates, and gate operation

Kyaw, Menke, Sim, Sawaya, Oliver, Guerreschi, Aspuru-Guzik, arXiV:2006.03070 (2020)



QCAD for quantum optical experiments

Kottman, Krenn, Kyaw, Alperin-Lea, Aspuru-Guzik arXiv:2006.03075 (2020)

3

(a)

(b) (c)

(d) (e) (f)

Beam Splitter

Dove Prism

Phase Shifter Mode Shifter Mirror

Photon Source

FIG. 1. Quantum circuits for multi-photonic high-dimensional quantum optics. Optical paths are denoted by a, b, c
while internal mode numbers are denoted by subscripts. Here we use the orbital angular momentum of photons as a high
dimensional degree of freedom. In general this approach can be applied to any discrete high dimensional quantum numbers.
Each internal mode is represented by several qubits representing the photon occupation number (see also the appendix ). (a)
Example of a beam splitter as used in Fig. 3 where each internal mode is represented by one qubit. The general multi-photon
beam splitter (as used in Fig. 2) is constructed with a Trotter expansion and is too large to show here (see the appendix for
more details). (b) Direct emulation of a high-dimensional entangled photon state created by spontaneous parametric down
conversion in a nonlinear crystal. (c) Mode dependent phase shifter (Dove prism) implemented as multiple phase shifters acting
on the corresponding modes (see the appendix for more details). (d) Mode independent phase shifter where the photonic
occupation number is encoded in binary into 3 qubits (up to 7 photons per mode). (e) Cyclic approximation to a mode shifter
(hologram) implemented by photonic swap gates (each swap acts on all the qubits which represent the mode; see also the
appendix ). (f) Mirror implemented by photonic swap gates.

computers. Ideally the simulation would reduce the
setup size by optimizing parameters of specific elements
to zero. In this case the optimized topology would
emerge. Recently some of us developed classical graph
based optimization methods for quantum optics.[59] We
believe that the full potential of the techniques developed
in this work will be reached in combination with those
topological optimization methods. The quantum part
can for example be an e�cient sub-module of the overall
topological optimization.

The optimization is performed in the spirit of varia-
tional quantum eigensolvers (VQE) originally proposed
to variationally approximate eigenstates of a given
Hamiltonian.[60] In this work, we use VQE to optimize
fidelities for a given target state which can be written as
expectation value

F = |h ||�i|2 = h�|H|�i, (2)

with the Hamiltonian H = | ih |, and where  is the
desired target state. Depending on the state, the num-
ber of measurable components (tensor products of Pauli

matrices) in the Hamiltonian, can grow large. One pro-
posed way to reduce the number of measurements is to
group the Hamiltonian into commuting cliques[61–63], a
technique which could be applied here in the same way.
Since in contrast to most VQE optimizations the target
state is known here, we can measure the Hamiltonian di-
rectly by using the unitary U that prepares the target
state and measure the transformed projector

P
0 = U

†
 HU = |00 . . . 0ih00 . . . 0| =

O

j

1

2
(1 + Zj) ,

(3)

where Zj are usual Pauli matrices. The expectation value
of this Hamiltonian can then be estimated by measuring
all qubits in the computational basis and counting the
“all-zero” results.

Optimization of a heralded, post-selected state

Two common measurement based preparation strate-
gies in quantum optics are heralding and post-selection.



QCAD for quantum optical experiments

Kottman, Krenn, Kyaw, Alperin-Lea, Aspuru-Guzik arXiv:2006.03075 (2020)



Orquestra



The Unified Quantum Operating Environment
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WE CAN SOLVE THESE CHALLENGES WITH
WORKFLOW MANAGEMENT TOOLS 

HPC GPU QUANTUM

DEVELOP  
WORKFLOWS

DEPLOY
WORKFLOWS

ANALYSE
RESULTS

RAPID ITERATION
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Using Tableau + Orquestra Data Correlation 
Service (ODCS) to visualize results.
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Used Xmon qubits to compute energy surface of molecular hydrogen
Started in Hartree-Fock state, used unitary coupled cluster, got chemical accuracy

P. O’Malley, et al. Physical Review X 6 031007 2016 

Superconducting VQE for H2



Predicted dissociation energy without exponentially costly compilation for first time
Substantial robustness to systematic errors seen  

Superconducting VQE vs Phase Estimation

P. O’Malley, et al. Physical Review X 6 031007 2016 



Ion trap implementation
Collaboration with Rainer Blatt (Innsbruck)

Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen,
Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos

Phys. Rev. X 8, 031022



Ion trap implementation (LiH)

Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen,
Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos

Phys. Rev. X 8, 031022



H-Be-H, 6 qubit simulations.

Variational Eigensolver by IBM team!

Hardware-e�cient Quantum Optimizer for Small Molecules and Quantum Magnets

Abhinav Kandala,⇤ Antonio Mezzacapo,⇤ Kristan Temme, Maika Takita, Jerry M. Chow, and Jay M. Gambetta
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

(Dated: April 18, 2017)

Quantum computers can be used to address

molecular structure, materials science and con-

densed matter physics problems, which currently

stretch the limits of existing high-performance

computing resources [1]. Finding exact numerical

solutions to these interacting fermion problems

has exponential cost, while Monte Carlo methods

are plagued by the fermionic sign problem. These

limitations of classical computational methods

have made even few-atom molecular structures

problems of practical interest for medium-sized

quantum computers. Yet, thus far experi-

mental implementations have been restricted to

molecules involving only Period I elements [2–

8]. Here, we demonstrate the experimental op-

timization of up to six-qubit Hamiltonian prob-

lems with over a hundred Pauli terms, determin-

ing the ground state energy for molecules of in-

creasing size, up to BeH2. This is enabled by a

hardware-e�cient quantum optimizer with trial

states specifically tailored to the available inter-

actions in our quantum processor, combined with

a compact encoding of fermionic Hamiltonians [9]

and a robust stochastic optimization routine [10].

We further demonstrate the flexibility of our ap-

proach by applying the technique to a problem

of quantum magnetism. Across all studied prob-

lems, we find agreement between experiment and

numerical simulations with a noisy model of the

device. These results help elucidate the require-

ments for scaling the method to larger systems,

and aim at bridging the gap between problems at

the forefront of high-performance computing and

their implementation on quantum hardware.

The fundamental goal of addressing molecular struc-
ture problems is to solve for the ground state energy of
many-body interacting fermionic Hamiltonians. Solving
this problem on a quantum computer relies on a mapping
between fermionic and qubit operators [11]. This restates
it as a specific instance of a local Hamiltonian problem
on a set of qubits. Given a k-local Hamiltonian H, com-
posed of terms that act on at most k qubits, the solution
to the local Hamiltonian problem amounts to finding its
smallest eigenvalue EG,

H|�i = EG|�i. (1)

To date, no e�cient algorithm is known that can solve
this problem in full generality. For k � 2 the problem

⇤ These authors contributed equally to this work.

is known to be QMA-complete [12]. However, it is ex-
pected that physical systems have Hamiltonians that do
not constitute hard instances of this problem, and can be
solved e�ciently on a quantum computer.
Following Feynman’s idea for quantum simulation [13]

a quantum algorithm for the ground state problem
of interacting fermions was proposed in [14] and [15].
The approach relies on a good initial state that has
a large overlap with the ground state and then solves
the problem using the quantum phase estimation algo-
rithm (PEA) [16]. While PEA has been demonstrated to
achieve extremely accurate energy estimates for quantum
chemistry [2, 3, 5, 8], it applies stringent requirements on
quantum coherence.
An alternative approach is the use of quantum op-

timizers. Their utility spans from combinatorial opti-
mization problems [17, 18] to quantum chemistry in the
form of variational quantum eigensolvers (VQEs), where
they were introduced to reduce coherence requirements
on quantum hardware [4, 19, 20]. The VQE uses Ritz’s
variational principle to prepare approximations to the
ground state and its energy. In this approach, the quan-
tum computer is used to prepare variational trial states
that depend on a set of parameters. Then, the expecta-
tion value of the energy is estimated and the result is fed
to a classical optimizer to generate a new set of improved
parameters. The advantage of VQE over classical simu-
lation methods is that is can prepare trial states that are
not amenable to e�cient classical numerics.
To date, the VQE approach realized in experiment has

been limited by di↵erent factors. Typically, one considers
a unitary coupled cluster (UCC) ansatz for the trial state,
which has a number of parameters that scale quartically
with the number of spin-orbitals considered, in the sin-
gle and double excitation approximation. Furthermore,
when implementing the UCC ansatz on a quantum com-
puter, one has to account for Trotterization errors [20–
22]. A di↵erent approach is the use of a hardware-e�cient
ansatz, which is a trial state parameterized by quantum
gates that are tailored to the physical device available. It
is crucial to determine to which extent these hardware-
e�cient trial states provide good solutions to molecular
structure problems of increasing size.
In this work, we use a superconducting quantum pro-

cessor to perform hardware-e�cient optimizations of the
molecular energies of H2, LiH and BeH2, and a Heisen-
berg antiferromagnetic model in an external magnetic
field. The device used in the experiments is a super-
conducting quantum processor with six fixed-frequency
transmon qubits, together with a central weakly-tunable
asymmetric transmon qubit [23]. The device is cooled
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FIG. 1. Quantum chemistry on a superconducting quantum processor: device and quantum circuit for
variational trial state preparation. Solving molecular structure problems on a quantum computer relies on mappings
between fermionic and qubit operators. a Parity mapping of 8 spin orbitals (drawn in blue and red, not to scale) onto 8 qubits,
reduced to 6 qubits via qubit tapering of fermionic spin-parity symmetries. The bars indicate the parity of the spin-orbitals
encoded in each qubit. b False colored optical micrograph of the superconducting quantum processor. The transmon qubits
are coupled via two CPW resonators, highlighted in blue, and have individual CPW resonators for control and readout. c
Hardware-e�cient quantum circuit for trial state preparation and energy estimation, shown here for 6 qubits. The circuit is
composed of a sequence of interleaved single-qubit rotations, and entangling unitary operations UENT that entangle all the
qubits in the circuit. A final set of post-rotations prior to qubit readout are used to measure the expectation values of the terms
in the qubit Hamiltonian, and estimate the energy of the trial state. d An example of the pulse sequence for the preparation
of a six qubit trial state, where UENT is implemented as a sequence of two-qubit cross resonance gates.

down in a dilution refrigerator, thermally anchored to its
mixing chamber plate at 25 mK. The experiments dis-
cussed here make use of six of these qubits (labeled Q1-
6), highlighted in Fig. 1b. The qubits are coupled via two
superconducting coplanar waveguide (CPW) resonators
that serve as quantum buses, and can be individually
controlled and read out through independent readout res-
onators.

The hardware-e�cient trial states we consider use the
naturally available entangling interactions of the super-
conducting hardware, described by a drift Hamiltonian
H0 that generates the entanglers UENT = exp(�iH0⌧).
These are interleaved with arbitrary single-qubit Euler
rotations which are implemented as a combination of Z
and X gates, given by U

q,i(~✓) = Z
q

✓q,i
1

X
q

✓q,i
2

Z
q

✓q,i
3

, where q

identifies the qubit and i = 0, 1, ...d refers to the depth
position, as depicted in Fig. 1c. The N -qubit trial states
are obtained from the state | 00 . . . 0i, applying d entan-

glers UENT that alternate with N Euler rotations, giving

|�(~✓)i =
NY

q=1

h
U

q,d(~✓)
i
⇥ UENT ⇥

NY

q=1

h
U

q,d�1(~✓)
i

· · ·⇥ UENT ⇥

NY

q=1

h
U

q,0(~✓)
i
| 00...0i. (2)

Since the qubits are all initialized in their ground state
| 0i, the first set of Z rotations of Uq,0(~✓) is not imple-
mented, resulting in a total of p = N(3d � 1) indepen-
dent angles. In the experiment, the evolution time ⌧

and the individual couplings in H0 can be controlled.
However, numerical simulations indicate that accurate
optimizations are obtained for fixed-phase UENT, leav-
ing the p control angles as variational parameters . Our
hardware-e�cient approach does not rely on the accu-
rate implementation of specific two qubit gates and can
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FIG. 3. Application to quantum chemistry: Potential energy surfaces Experimental results (black circles), exact
energy surfaces (dotted lines) and density plots of outcomes from numerical simulations, for a number of interatomic distances
for a, H2 b, LiH, and c, BeH2. The experimental and numerical results presented here use depth d = 1 circuits. The error bars
on the experimental data are smaller than the size of the markers. The density plots are obtained from 100 numerical outcomes
at each interatomic distance. The top insets of each figure highlight the qubits used for the experiment, and the cross-resonance
gates that constitute UENT. The bottom insets of each figure are representations of the molecular geometry, not drawn to scale.
For all the three molecules, the deviation of the experimental results from the exact curves, is well explained by the stochastic
simulations.

total of 30 Euler control angles associated with 6 qubits.
The inset of Fig. 2 shows the simultaneous perturbation
of 30 Euler angles, as the energy estimates are updated.

To obtain the potential energy surfaces for H2, LiH,
and BeH2, we search for the ground state energy of their
molecular Hamiltonians, using 2, 4, and 6 qubits respec-
tively, for depth d = 1, for a range of di↵erent inter-
atomic distances. The experimental results are compared
with the ground state energies obtained from exact diag-
onalization and outcomes from numerical simulations in
Fig. 3. The colored density plots in each panel are ob-
tained from 100 numerical optimizations for each inter-
atomic distance, using CR entangling gates on the same
topology as the experiments. The simulations performed
account for decoherence e↵ects, simulated by adding am-
plitude damping and dephasing channels after each layer
of quantum gates. The impact of finite sampling on the
optimization algorithm is taken into account by numeri-
cally sampling the single Pauli terms in the Hamiltonian,
and adding their averages. In addition to the e↵ects of
decoherence and noisy energy estimates, the deviations
are also due to low circuit depth for trial state prepara-
tion, which, for example, explains the kink in the range

l = 2.5� 3
�
A, in Fig. 3b. In the absence of noise, depths

of d = 1, 8, 28 are required to achieve chemical accuracy
(approx. 0.0016 Hartree), on the current experimental
connectivities for H2, LiH and BeH2, respectively. We
emphasize that our hardware-e�cient approach is unaf-
fected by coherent gate errors, as long as entanglement is
provided through the trial state preparation circuit. This
shifts the focus to the reduction of incoherent errors, fa-
voring our fixed-frequency, all-microwave control, qubit
architecture. Furthermore, the e↵ect of incoherent errors
can be mitigated as recently proposed [26–28], without

requiring additional quantum resources.
We now explore a problem where the advantage of us-

ing higher circuit depths is apparent despite energy mea-
surement fluctuations and decoherence e↵ects. We con-
sider a four qubit Heisenberg model on a square lattice,
in the presence of an external magnetic field. The model
is described by the Hamiltonian H = J

P
hiji(XiXj +

YiYj +ZiZj) +B
P

i Zi, where hiji indicates the nearest
neighbor pairs, J is the strength of the spin-spin inter-
action, and B the magnetic field along the Z-direction.
We utilize our technique to solve for the ground state
energy of the system for a range of J/B values. When
J = 0, the ground state is completely separable, and the
best estimates are obtained for depth d =0. As J is in-
creased, the ground state is increasingly entangled, and
the best estimates are instead obtained at d = 2, despite
the increased decoherence caused by using two entanglers
for trial state preparation. This is shown in Fig. 4a for
J/B = 1. The experimental results are compared with
the exact ground state energies for a range of J/B val-
ues in Fig. 4b, and our deviations are captured by the
density plots of the numerical outcomes that account for
noisy energy estimations and decoherence. Furthermore,
in Fig. 4c, we show that our approach can also be used
to evaluate observables such as the magnetization of the
system Mz.

The experiments presented here have shown that a
hardware-e�cient optimizer implemented on a six-qubit
superconducting quantum processor is capable of ad-
dressing molecular problems beyond period 1 elements,
up to BeH2. Crucial aspects to improve will be in-
creased coherence, enabling longer circuit depth for state
preparation, increased on-chip qubit connectivity, reduc-
ing critical depth for achieving chemical accuracy, and

Kandala, et al Nature 549 242 (2017)
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Largest simulation to date: 
Hartree Fock,  12 qubits. Hydrogen chains.

Rubin et al Science 369 1084-1089 (2020)

in an arbitrary basis, the most efficient strat-
egies are based on a tensor factorization of
the Hamiltonian that requires many appli-
cations of Uk to simulate (19, 20). Exploiting
this tensor factorization with basis rotations
is also key to the most efficient strategy for
measuring hHi in variational algorithms and
requires implementing Uk before measure-
ment (21).
We used this variational ansatz based on

basis rotations to benchmark the Sycamore
processor for linear hydrogen chains of length
6, 8, 10, and 12 and two pathways for diazene
bond isomerization. We modeled hydrogen
chains of length N with N qubits. Our simu-
lations required N qubits to simulate 2N spin
orbitals because of the constraint that the
a–spin orbitals have the same spatial wave
function as that of the b–spin orbitals. For
diazene, we required 10 qubits after prepro-
cessing. The hydrogen chains are a common
benchmark in electronic structure (22–24), and
the diazene bond isomerization provides a sys-
tem in which the required accuracy is more
representative of typical electronic structure
problems and has been used as a benchmark
for coupled-cluster methods (25). For the
diazene isomerization, our goal was to resolve
the energetic difference between the transi-
tion states of two competing mechanisms,
requiring accuracy of about 40 millihartree.
This objective differs from prior quantum
simulations of chemistry, which have focused
on bond dissociation curves (4–7).
Onemotivation for thisworkwas to calibrate

and validate the performance of our device
in realizing an important algorithmic primi-
tive for quantum chemistry and lattice model
simulation. Our experiment was also appealing
for benchmarking purposes because the
circuits we explored generated highly entan-
gled states but with a special structure that
enabled the efficient measurement of fidelity
and the determination of systematic errors. Fur-
ther motivation was to implement the largest
variational quantum simulation of chemistry so
that it would be possible to better quantify the
current gap between the capabilities of NISQ
devices and real applications. Even though the
Hartree-Fock ansatz is efficient to simulate
classically, the circuits in our experiment are far
more complex than prior experimental quan-
tum simulations of chemistry. Last, the struc-
ture of the Hartree-Fock state enabled us to
sample the energy and gradients of the varia-
tional ansatz with fewer measurements than
typically would be required, allowing us to
focus on other aspects of simulating chem-
istry at scale, such as the effectiveness of
various types of error mitigation. Thus, our
choice to focus on Hartree-Fock for this ex-
periment embraces the notion that we should
work toward valuable quantum simulations of
chemistry by first scaling up important com-

ponents of the exact solution (such as error-
mitigation strategies and basis rotations) in a
fashion that enables us to completely under-
stand and perfect those primitives.
Variational algorithms are specified in the

form of a functional minimization. This mini-
mization has three main components: ansatz
specification in the form of a parameterized
quantum circuit (the function), observable
estimation (the functional), and outer-loop
optimization (the minimization). Each com-
ponent is distinctively affected by our choice to
simulate a model corresponding to noninter-
acting fermion wave functions. Symmetries
built into this ansatz allowed for reduction
of the number of qubits required to simulate
molecular systems, a reduction in the num-
ber of measurements needed to estimate the
energy, and access to the gradient without ad-
ditional measurements beyond those required
for energy estimation. Details on how we real-
ized Hartree-Fock with VQE are available in
the supplementary materials, section A.
The unitary in Eq. 2 can be compiled exactly

(without Trotterization) by using a procedure
based on Givens rotations. This strategy was
first suggested for quantum computing in
work on linear optics in (26) and later in the

context of fermionic simulations in (27). We
implemented these basis rotations using the
optimal compilation of (28), which has gate
depth N/2 and requires only h(N – h) two-
qubit “Givens rotation” gates on a linearly
connected architecture, giving one rotation for
each element in the unitary basis change. These
Givens rotation gates were implemented by
decomposition into two

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates and

three Rz gates. In Fig. 1, we depict the basis
change circuit for the H12 chain, which has a
diamond-shaped structure. We further review
the compilation of these circuits in the supple-
mentary materials, section B.
The average energy of any molecular sys-

tem can be evaluated with knowledge of the
one-particle reduced-density matrix (1-RDM),
ha†paqi, and the two-particle reduced-density
matrix (2-RDM), ha†pa†qarasi. In general, it is
not possible to exactly reconstruct the 2-RDM
fromknowledge of just the 1-RDM.However, for
single-Slater determinants (as in our Hartree-
Fock experiment), the 2-RDM is completely
determined by the 1-RDM (29):

ha†pa†qarasi ¼ ha†pasiha†qari" ha†qasiha†pari
ð4Þ
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Fig. 1. Basis rotation circuit and compilation. (A) To the left of the circuit diagram are the initial orbitals
for the H12 chain with atom spacings of 1.3 Å, obtained by diagonalizing the Hamiltonian, ignoring
electron-electron interactions. The circuit diagram depicts the basis rotation ansatz for a linear chain of
12 hydrogen atoms. Each gray box with a rotation angle q represents a Givens rotation gate. (B) Compilation

of the Givens rotation gate to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates and single-qubit gates that can be realized directly in

hardware. The H12 circuit involves 72
ffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates and 108 single-qubit Z rotation gates with a total

of 36 variational parameters. (C) Depiction of a 12-qubit line on a subgrid of the entire 54-qubit Sycamore
device. All circuits only require gates between pairs of qubits that are adjacent in a linear topology.
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Thus, in our experiment we only needed to sam-
ple the 1-RDM to estimate the energy. Because
the 2-RDM has quadratically more elements
than the 1-RDM, this approach is a substan-
tial simplification. We measured the 1-RDM
using a protocol described in the supplemen-
tary materials, section C. This protocol en-
abled us to optimally parallelize measurement
of all N2 1-RDM elements with N + 1 distinct
circuits. For each distinct circuit, we made
250,000 measurements.
We performed two types of error mitigation

on our measured data: postselection on parti-
cle number (conserved in basis rotations) and
pure-state projection. To apply postselection,
wemodified our circuits by first rotating into a
basis that diagonalizes a†paq þ a†qap for N dif-
ferent pairs of p and q so that these elements
could be sampled at the same time as the total
particle-number operator. Following the strat-
egy in the supplementary materials, section C,
this measurement was accomplished at the
cost of two T gates and one

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate per

pair of qubits. We then postselected to discard
measurements where the total number of ex-
citations changed from h/2.
For pure-state purification, we leveraged

the fact that the 1-RDM of any single-Slater

determinantwave functionyk has eigenvalues
restricted to be 0 and 1 (30). We performed
projection back to the pure set of 1-RDMs
using a technique known as McWeeny puri-
fication (29). Details on the procedure and
sampling bounds for guaranteeing that the
procedure has a fixed-point 1-RDMcorrespond-
ing to a Slater determinant can be found in
the supplementary materials, section E. Al-
though McWeeny purification only works
for Slater determinant wave functions, pure-
state N-representability conditions are known
for more general systems (31), and we expect
that a computational procedure similar to
enforcing ensemble constraints could be used
(32, 33).
A variety of circuit optimization techniques

based on gradient and gradient-free methods
have been proposed in the context of NISQ al-
gorithms. We developed an optimization tech-
nique that exploits local gradient and Hessian
information in a fashion that is distinctive
to the Hartree-Fock model. It is based on a
proposal for iterative construction of a wave
function to satisfy the Brillouin condition for
a single-particle model (34). Our optimization
protocol used the property that at a local op-
tima, the commutator of the Hamiltonian H

with respect to any generator of rotation
G is zero—hyj½H;G#jyi ¼ 0—and sequential
basis change circuits can be concatenated into
a single basis change circuit (UaUb = Uab). Using
these relations and taking G ¼

X
pq
kpqa†paq,

as in our experiment, the double commuta-
tor hyj½H;G#;Gjyi determined an augmented
Hessian (matrix of derivatives) that we could
use to iteratively update the wave function so
that the first-order condition was approximately
satisfied. Regularization was added by limit-
ing the size of update parameters (35). Details
are provided in the supplementary materials,
section H.
As a benchmark, we studied symmetrically

stretched hydrogen chains of lengths 6, 8, 10,
and 12 atoms (Fig. 2). The initial parameters
were set to the parameters obtained by solving
the Hartree-Fock equations on a classical com-
puter. The data from the quantum computer
were plotted along with classical Hartree-Fock
results, showing better and better agreement
as we added postselection, postselection and
purification, and then error-mitigated var-
iational relaxation. The 6- and 8-qubit data
achieved chemical accuracy after VQE, and
even the 12-qubit data followed the expected
energy closely. The error data in Fig. 2B and
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Fig. 2. Static and VQE performance on hydrogen chains. Binding curve
simulations for H6, H8, H10, and H12 with various forms of error mitigation. (A and
D to F) Comparison of Sycamore’s raw performance (yellow diamonds) with
postselection (green squares), purification (blue circles), and error-mitigated
combined with variational relaxation (red triangles). For all hydrogen systems,
the raw data at 0.5-Å bond length is off the top of the plot. The yellow, green, and
blue points were calculated by using the optimal basis rotation angles computed
from a classical simulation; thus, the variational optimization shown here is only used
to correct systematic errors in the circuit realization. (B) The absolute error and
infidelity for the H6 system. For all points, we calculated a fidelity witness described

in the supplementary materials, section D. The error bars for all points were computed
by estimating the covariance between simultaneously measured sets of 1-RDM
elements and resampling those elements under a multivariate Gaussian model.
Energies from each sample were tabulated, and the standard deviation is used as the
error bar. The “+PS” means applying postselection to the raw data, “+Purification”
means applying postselection and McWeeny purification, and “+VQE” means
postselection, McWeeny purification, and variational relaxation. (C) Optimization
traces for three H6 geometries (bond distances of 0.5, 1.3, and 2.1 Å). All
optimization runs used between 18 and 30 optimization. The lowest-energy solution
from the optimization trace was reported.

RESEARCH | RESEARCH ARTICLE

on Septem
ber 16, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 QUANTUM COMPUTING

Hartree-Fock on a superconducting qubit
quantum computer
Google AI Quantum and Collaborators*†

The simulation of fermionic systems is among the most anticipated applications of quantum computing.
We performed several quantum simulations of chemistry with up to one dozen qubits, including modeling
the isomerization mechanism of diazene. We also demonstrated error-mitigation strategies based on
N-representability that dramatically improve the effective fidelity of our experiments. Our parameterized
ansatz circuits realized the Givens rotation approach to noninteracting fermion evolution, which we
variationally optimized to prepare the Hartree-Fock wave function. This ubiquitous algorithmic primitive is
classically tractable to simulate yet still generates highly entangled states over the computational basis,
which allowed us to assess the performance of our hardware and establish a foundation for scaling up
correlated quantum chemistry simulations.

T
he prediction ofmolecular properties and
chemical reactions from ab initio quan-
tummechanics has emerged as one of the
most promising applications of quantum
computing (1). This fact is due both to the

commercial value of accurate simulations as
well as the relatively modest number of qubits
required to represent interesting instances.
However, as the age of “quantum supremacy”
dawns (2), so has a more complete apprecia-
tion of the challenges required to scale such
computations to the classically intractable
regime using near-term intermediate scale
quantum (NISQ) devices. Achieving that objec-
tive will require further algorithmic innova-
tions, hardwarewithmore qubits and low error
rates, and more effective error-mitigation strat-
egies. Here, we report a variational quantum
eigensolver (VQE) (3) simulation of molecular
systems with progress in all three directions.
We used the Google Sycamore quantum

processor to simulate the binding energy of
hydrogen chains as large as H12, as well as a
chemical reaction mechanism (the isomeri-
zation of diazene). The Sycamore quantum
processor consists of a two-dimensional array
of 54 transmon qubits (2). Each qubit is
tunably coupled to four nearest neighbors in a
rectangular lattice. Our largest simulations
used a dozen qubits—twice the size as the
largest prior quantum simulations of chemis-
try (4)—and required only nearest-neighbor
coupling (Fig. 1). Prior simulations of chem-
istry on superconducting qubit devices and
trapped ion systems demonstrated the possi-
bility of error mitigation through VQE (4–10),
albeit on a small scale. We demonstrated that
within the model, achieving chemical accu-
racy through VQE is possible for intermediate-
scale problems when combined with effective
error mitigation strategies. Furthermore, we

argue that the circuit ansatz we used for VQE
is especially appealing as a benchmark for
chemistry.
We simulated quantum chemistry in a

second-quantized representation inwhich the
state of each of N qubits encoded the occu-
pancy of an orbital basis function. We used
what are commonly referred to as “core or-
bitals” as the initial orbitals (shown for H12 in
Fig. 1A, left), which are the eigenfunctions
of the molecular Hamiltonian without the
electron-electron interaction term. The goal
of this experiment was to use a quantum com-
puter to implement the Hartree-Fock proce-
dure, which is a method for obtaining the best
single-particle orbital functions assuming each
electron feels the average potential generated
fromall the other electrons. This assumption is
enforced by constraining the wave function to
be a product of one-particle functions, which
has been appropriately antisymmetrized to
satisfy the Pauli exclusion principle. An initial
guess for the Hartree-Fock state, from which
we can optimize the orbitals, was obtained by
filling the lowest-energy h/2 orbitals, eachwith
a spin-up electron and a spin-down electron,
where h is the number of electrons. Because
we simulated the singlet ground state for all
molecules considered here, there is no spin
component to the mean-field approximation;
thus, we only needed to explicitly simulate the
h/2 spin-up electrons.
By performing a unitary rotation of the

initial (core) orbital basisϕp(r), one can obtain
a new valid set of orbitals ~ϕpðrÞ as a linear
combination of the initial ones:

~ϕpðrÞ ¼
XN

q¼1
½ek%pqϕqðrÞ ð1Þ

where k is anN ×N anti-Hermitianmatrix and
[ek]pq is the p, q element of the matrix expo-
nential of k. A result attributable to Thouless
(11) is that one can express the unitary that
applies this basis rotation to the quantum

state as time-evolution under a noninteract-
ing fermion Hamiltonian. Specifically, if we
take a†p and ap to be fermionic creation and
annihilation operators, respectively, for the
core orbital ϕp(r), then we can parameterize
jyki, an antisymmetric product state in the
new basis ~ϕpðrÞ, as noninteracting fermion
dynamics from a computational basis state
jhi ¼ a†h & & & a†1 j0i in the core orbital basis:

jyki ¼ Ukjhi;

Uk ¼ exp
XN

p;q¼1
kpqa†paq

! "
ð2Þ

Such states are referred to as Slater determinants.
To complete the accurate preparation of

Hartree-Fock states,we implementedvariational
relaxation of the k parameters to minimize
the energy of jyki starting from the optimal
k determined by solving theHartree-Fock equa-
tions classically. This is an idealized implemen-
tation of VQE that allowed us to demonstrate
error mitigation of coherent errors through
variational relaxation. We defined the Hartree-
Fock state jyHFi to be the lowest-energy Slater
determinant for the molecular Hamiltonian H

jyHFi ¼ jyk'i;k' ¼ arg minkhykjHjyki ð3Þ

We applied Uk to |hi using our quantum com-
puter and then performed the optimization
over k through feedback from a classical op-
timization routine. The energy decreased be-
cause the initial core orbitals were obtained
by ignoring the electron-electron interaction
and variational relaxation compensates for
coherent errors. Because the generator for
Uk corresponds to a noninteracting fermion
Hamiltonian, its action on a product state in
second quantization can be classically simu-
lated in O(N3) by diagonalizing the one-body
operator, and in some cases, the Hartree-Fock
procedure can be made to converge with even
lower complexity. Despite this, we argue that
this procedure is still a compelling experiment
for a quantum computer.
The Hartree-Fock state is usually the initial

state for classical correlated electronic struc-
ture calculations such as coupled cluster and
configuration interaction methods, as well as
for many quantum algorithms for chemistry.
Thus, often one chooses to work in the molec-
ular orbital basis, which is defined so that the
Hartree-Fock state is a computational basis
state. However, the molecular orbital basis
Hamiltonian has a large number of terms that
can be challenging to simulate and measure
with low complexity. Accordingly, the most
efficient quantum algorithms for chemistry
(12–15) require that one perform the simulation
in more structured bases with asymptoti-
cally fewer terms (16–18), necessitating that
Uk' is applied explicitly at the beginning of the
computation. Even when simulating chemistry
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Identifying challenges towards practical quantum advantage through resource estimation:
the measurement roadblock in the variational quantum eigensolver
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Recent advances in Noisy Intermediate-Scale Quantum (NISQ) devices have brought much atten-
tion to the potential of the Variational Quantum Eigensolver (VQE) and related techniques to provide
practical quantum advantage in computational chemistry. However, it is not yet clear whether such
algorithms, even in the absence of device error, could achieve quantum advantage for systems of
practical interest and how large such an advantage might be. To address these questions, we have
performed an exhaustive set of benchmarks to estimate number of qubits and number of measure-
ments required to compute the combustion energies of small organic molecules to within chemical
accuracy using VQE as well as state-of-the-art classical algorithms. We consider several key modi-
fications to VQE, including the use of Frozen Natural Orbitals, various Hamiltonian decomposition
techniques, and the application of fermionic marginal constraints. Our results indicate that although
Frozen Natural Orbitals and low-rank factorizations of the Hamiltonian significantly reduce the qubit
and measurement requirements, these techniques are not sufficient to achieve practical quantum com-
putational advantage in the calculation of organic molecule combustion energies. This suggests that
new approaches to estimation leveraging quantum coherence, such as Bayesian amplitude estimation
[1, 2], may be required in order to achieve practical quantum advantage with near-term devices. Our
work also highlights the crucial role that resource and performance assessments of quantum algo-
rithms play in identifying quantum advantage and guiding quantum algorithm design.

I. INTRODUCTION

In the last decade, quantum computers have evolved
from laboratory prototypes of a few qubits to machines
with tens of qubits that are commercially available for
researchers and businesses to use [3, 4]. Google recently
announced the realization of the quantum supremacy
milestone: their 53-qubit chip accomplished a specific
task that would be extremely difficult to simulate with
a classical supercomputer [5]. This task was specifically
designed to be well suited to the quantum processor and
challenging for classical computers, and does not solve a
practical problem. The next milestone, and arguably the
most pressing one [6], is finding a practical quantum ad-
vantage with noisy intermediate-scale quantum (NISQ)
devices [7], that is, running an algorithm on a NISQ de-
vice that provides an improved solution for a commer-
cially relevant task. This improvement can manifest in
different ways, either as a reduction in the time to solu-
tion or an increase in the quality of the solution. Accom-
plishing this goal requires first a steady improvement
in the quality of quantum computing hardware. Fortu-
nately, we are witnessing a rapid growth in the number
of qubits and fidelity of these machines as indicated by
the recent trends in metrics such as quantum volume [8]:

in less than a year this went from 32 in January, 1 to 64 in
June,2 128 in September3, and finally 4 million in Octo-
ber (still awaiting experimental confirmation).4 The sec-
ond requirement towards quantum advantage is identi-
fying commercially relevant tasks for which a near-term
quantum algorithm can provide a measurable improve-
ment compared to classical alternatives.

Quantum chemistry has been identified as a likely
candidate [9–11] for quantum advantage for multiple
reasons. First, electronic structure calculations are used
extensively in the development of many technologies,
for example in the chemicals industry [12], drug de-
velopment [13], and battery materials research [14].
Second, electronic structure calculations rely on the
Schrödinger equation, for which a general exact solu-
tion has exponential cost on a classical computer with
all known classical methods. Third, quantum comput-
ers can store exponentially scaling representations of the

1 https://www.ibm.com/blogs/research/2020/01/quantum-
volume-32/

2 https://www.ibm.com/blogs/research/2020/01/quantum-
volume-32/ and https://newsroom.ibm.com/2020-08-20-IBM-
Delivers-Its-Highest-Quantum-Volume-to-Date-Expanding-the-
Computational-Power-of-its-IBM-Cloud-Accessible-Quantum-
Computers

3 https://www.honeywell.com/en-us/newsroom/news/2020/09/achieving-
quantum-volume-128-on-the-honeywell-quantum-computer

4 https://ionq.com/news/october-01-2020-most-powerful-
quantum-computer
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FIG. 5. (Top) Error relative to CCSD(T)/AV5Z for the FNO
method using the FNO threshold for truncation and frozen
core orbitals. (Bottom) Largest number of qubits per active
electrons that would be needed to compute the combustion
energy for each molecule in the given active space. DEMP2 cor-
rection is included in the results.

10�3, 10�4, 10�5 and 10�6. The upper part of Figure
5 shows that the combustion energy error is indistin-
guishable from the full basis value at a threshold of 10�6.
A threshold of 10�5 yields a maximum deviation of
�1.8 kJ/mol from the full basis result, whereas a thresh-
old of 10�4 results in a maximum error of �7.1 kJ/mol,
larger than chemical accuracy.

To connect the FNO threshold to the size of the ac-
tive space in a transferable way, we plot the maximum
number of qubits per active electron for each combus-
tion reaction in the lower part of Figure 5. This num-
ber is obtained by dividing the number of active FNO
spin-orbitals by the number of active electrons for each
molecule in a combustion reaction, and then selecting
the largest result. A threshold of 10�4 corresponds to
about 13 qubits per electron, which is the number we
will use to estimate the size of the active space neces-
sary to reach chemical accuracy. This is an optimistic
estimate: the errors we observe are slightly larger than
chemical accuracy relative to the full basis limit for
AV5Z, but this could be compensated for by including
orbital optimization [89], or by using some of the qubit

reduction techniques [81, 82] mentioned above.
To conclude, our estimation for the number of qubits

Nq necessary to obtain accurate dynamical correlation
energies is at least

Nq ⇡ 13Nel (16)

where Nel is the number of active electrons in the sys-
tem.

C. Measurement estimation

In this section, our aim is to estimate the number
of measurements needed for a single energy estima-
tion step in the VQE procedure. We consider measure-
ment reduction techniques based on qubit-wise com-
mutativity of Pauli terms [29] and orbital basis rotation
[25, 34], realistic variance estimation, and an efficient or-
bital basis so that our final estimates reflect conditions
close to a large experiment. We aim to obtain extrapola-
tion formulas for the number of measurements for each
molecule in our benchmark set. This will allow us to ex-
trapolate the number of necessary measurements for the
large qubit active spaces needed for chemical accuracy
(see Section III B). We also provide empirical scaling re-
lations for two grouping methods.

1. Performance of Hamiltonian decomposition methods

We evaluated the Hamiltonian variance K for QWC
grouping and basis rotation approach with two different
bases for the Hamiltonian (canonical orbitals or FNOs)
and two different estimates for the variances (upper
bounds or CISD), giving a total of 4 different settings
for each grouping method. We ran computations for
all molecules in the set depicted on Figure 1, and also
included H2O and CO2 that are necessary for comput-
ing combustion energies. Due to technical limitations in
our code at the time of computation, the open-shell O2
was omitted. We expect scaling results would be similar
to those obtained for CO2. For each molecule, we com-
puted different active spaces with an integer number of
qubits per active electron up to a total of 80 qubits. This
represents the most extensive investigation of the num-
ber of measurements in VQE to our knowledge. We fit
our results to a power law for each grouping method:

K = a(Nq)
b (17)

where Nq is the number of qubits, a and b are fitted pa-
rameters. The obtained scaling exponents b are reported
next to the corresponding curves on Figure 6.

The number of terms in the quantum chemistry
Hamiltonian scales as N4, where N is the number of
qubits. However, the QWC grouping method with op-
timal measurement allocation approximately scales be-
tween N5 and N6. The optimal measurement alloca-
tion tends to attribute very little to no measurements

15

Molecule H2O CO2 CH4 CH4O C2H6 C2H4 C2H2 C2H6O C3H8 C3H6 C3H4
Nel 8 16 8 14 14 12 10 20 20 18 16
Nq 104 208 104 182 182 156 130 260 260 234 208

K · 10�3 1.9 16 1.6 8.4 8.5 6.6 3.1 24 16 23 18
M · 10�9 3.9 32 3.2 17 17 13 6.2 48 31 46 36
t (days) 2.3 39 1.9 18 18 12 4.6 71 47 62 44

TABLE IV. Estimated runtimes t in days for a single energy evaluation using the number of measurements M from extrapolated
values of K (Equation 17 and Table III), with e = 0.5 mHa and the effect of RDM constraints included by a factor of 1/2 (see
Equation 18). The number of qubits Nq is computed from the number of active electrons Nel and our empirical estimations of
active space size (Equation 16).

optimizing the circuit parameters, which requires at
least a few dozen to hundreds of iterations even with ex-
cellent optimizers. Hence, the total VQE runtime would
be about a month for the smallest molecules in our test
set. Larger molecules like ethanol already have a run-
time of 71 days for a single energy evaluation.

These runtimes originate essentially in the consid-
erable number of measurements necessary to obtain
chemically accurate energies for molecules. Even on
devices where the error rate would be small enough
to warrant reliable VQE execution, the runtime to so-
lution would be prohibitive for molecules in our test
set. Parallelization of measurements over several quan-
tum devices is a potential solution, provided all of these
quantum devices are sufficiently similar, and the distri-
bution of measurements designed to achieve chemical
accuracy. However, parallelization could only bring a
constant factor improvement and will not change the
scaling of the runtimes with molecular size. In the case
of systems dominated by non-dynamical correlation, a
smaller active space might be sufficient to demonstrate
quantum advantage over classical computing power. A
recent paper[21] proposes the chromium dimer with a
(24, 24) active space as a potential candidate. At 48
qubits, our extrapolation on Figure S11 indicates a run-
time of a few hours, which could allow for a full VQE
optimization with considerable effort. However, Hamil-
tonian coefficients for heavier, strongly correlated atoms
like Cr might be larger, which would result in larger val-
ues of K. Moreover, even if such a computation becomes
possible, the transition to practically relevant advantage
could require active spaces beyond 100 qubits.[21]

Focusing on the scaling b and omitting the prefac-
tor a, our results for the basis rotation grouping tech-
nique suggest that VQE has the potential to scale better
with system size than methods such as Coupled Clus-
ter. To transform this difference in scaling into an actual
practical advantage, research should focus on two di-
rections: 1) developing linear scaling Ansätze that pro-
vide sufficient accuracy on NISQ devices and 2) improv-
ing the measurement techniques, in particular to reduce
the dependency of the number of measurements on the
required precision. Regarding the first direction, hav-
ing sufficiently accurate Ansätze for VQE with a circuit
depth scaling only linearly implies an empirical runtime

scaling of N3 to N4, which would be very competitive
with the scaling of approaches such as CCSD(T). A num-
ber of Ansätze with linear scaling have been proposed
[90, 95], but more studies should be devoted to inves-
tigating their representational power for chemical sys-
tems of interest, and the impact of noise on their accu-
racy. Along this line, the development and benchmark-
ing of error mitigation techniques is crucial towards
achieving sufficient accuracy on NISQ devices. Regard-
ing the second direction, methods that can reduce the
dependency of the number of measurements with re-
spect to the required accuracy should be prioritized to
make VQE competitive. One such method has been re-
cently proposed by Wang et al.[1] and Koh et al.[2] which
trade circuit fidelity for a reduction in the number of
measurements.

IV. CONCLUSIONS

The Variational Quantum Eigensolver (VQE) is a
heuristic algorithm, which does not have yet a demon-
strated quantum speed-up over classical algorithms for
quantum chemistry. Hence, it is of utmost importance
to adequately benchmark VQE to evaluate its perfor-
mance and prospects for quantum advantage. One sig-
nificant step has recently been made in this direction [21]
by identifying what molecules are the most likely candi-
dates for quantum advantage, and in particular for prac-
tically relevant quantum advantage.

Here, we outlined a general procedure to assess quan-
tum advantage with a quantum heuristic by carrying
out a resource and performance assessment (RPA). We
performed a specific RPA for computing a set of com-
bustion energies with VQE, but our general method is
also applicable to other variational algorithms. First, it
is essential to assess the performance of state-of-the-art
classical algorithms to check whether they can solve the
problem at hand and estimate the compute resources
required. Then, the number of qubits necessary to ob-
tain a solution that is accurate enough should be es-
tablished. Finally, a rigorous estimation of the number
of measurements needed to evaluate expectation values
with sufficient accuracy is performed. Measurement re-
quirements are crucial to obtain approximate runtimes,
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FIG. 1. Set of hydrocarbons for which we compute combustion
enthalpies and corresponding quantum resources.

B. Benchmark data set

In this work, we aim to establish resource estimates
that can be extrapolated to larger systems. To ensure
our results are not specific to a single molecular system,
we wish to apply our resource estimation procedure to
a benchmark set of molecules. Ideally, this set would be
of practical relevance, contain small enough molecules
to allow chemically accurate computations, and corre-
spond to well-established, accurate experimental data.
For this reason, we chose to study combustion reactions
for the small hydrocarbons depicted in Figure 1. For
clarity, we explicitly write the general formula for the
reaction’s stoichiometry:

CxHyOz +
⇣

x +
y
4
� z

2

⌘
O2 ⌦ xCO2 +

y
2

H2O (1)

Experimental enthalpies of combustion for the hydro-
carbons in our benchmark set can easily be calculated
from available enthalpies of formation,[36] reported in
Table SI. By combining electronic ground state energies
with vibrational, rotational, and translational enthalpic
contributions, we can obtain simulated combustion en-
thalpies that can be compared to the experimental val-
ues. Most of our work focuses on getting accurate elec-
tronic energies, as harmonic vibrational corrections are
obtained from the second derivatives of the electronic
energies. Anharmonic effects are expected to be impor-
tant for larger, flexible molecules but only play a very
minor role in our benchmark reactions, as numerically
verified in Section III A.

Algorithms to compute anharmonic vibrational spec-
tra on quantum computers exist, and have been argued

to be better candidates than electronic structure for early
quantum advantage.[37] This assessment was based on
considerations of scaling of the number of terms and
their locality in the respective Hamiltonians. However,
the relation between these quantities and the actual re-
sources needed on a quantum computer is non-trivial,
and notably depends on the coefficients in front of each
Pauli term and of the measurement or qubit reduc-
tion techniques that can be applied. We hope that our
method for resource estimation, detailed below, will be
useful in future work to estimate resources for anhar-
monic vibrational spectra computations, which would
allow to more accurately compare prospects of both
problems for early quantum advantage.

Our chosen set of molecules is dominated by dynam-
ical correlation. As pointed out by Elfving et al., this
means that a very large number of orbitals is needed
for accurate treatment [21]. Hence, a very large num-
ber of qubits would be needed on a quantum computer
to rival with quantum chemistry capabilities on clas-
sical computers. In that sense, systems dominated by
non-dynamical correlations would be better candidates
for demonstrations of near-term quantum advantage.
However, we believe that most of our extrapolation and
resource estimation results are valid for general molec-
ular systems, whether dominated by dynamical or by
non-dynamical correlations. In particular, our results re-
garding the scaling of the number of measurements nec-
essary to reach chemical accuracy with the size of the
system should be transferable to most cases.

C. Methodology for resource estimation

This section describes the methods used for the re-
source and performance assessment. All calculations
were deployed using Zapata Computing’s Orquestra®

workflow management platform.

1. Classical benchmarks

The first component of the RPA consists of estab-
lishing a classical quantum chemistry approach to be
used for comparison, evaluating its limitations and the
classical resources needed to achieve chemical accu-
racy5 for a benchmark set of molecules. The current
gold standard for ground state electronic structure cal-
culations is the Coupled-Cluster with Singles, Doubles
and perturbative Triples CCSD(T) method [38], which
is polynomially-scaling as N7 where N is a proxy for

5 Chemical accuracy is defined as 1 kcal/mol or approximately
1.6 mHa. Its use as a standard for the accuracy of chemistry model-
ing methods is motivated by the exponential sensitivity of proper-
ties such as equilibrium constants and reactions rates to changes in
reaction energies [35].
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FIG. 1. Quantum chemistry on a superconducting quantum processor: device and quantum circuit for
variational trial state preparation. Solving molecular structure problems on a quantum computer relies on mappings
between fermionic and qubit operators. a Parity mapping of 8 spin orbitals (drawn in blue and red, not to scale) onto 8 qubits,
reduced to 6 qubits via qubit tapering of fermionic spin-parity symmetries. The bars indicate the parity of the spin-orbitals
encoded in each qubit. b False colored optical micrograph of the superconducting quantum processor. The transmon qubits
are coupled via two CPW resonators, highlighted in blue, and have individual CPW resonators for control and readout. c
Hardware-e�cient quantum circuit for trial state preparation and energy estimation, shown here for 6 qubits. The circuit is
composed of a sequence of interleaved single-qubit rotations, and entangling unitary operations UENT that entangle all the
qubits in the circuit. A final set of post-rotations prior to qubit readout are used to measure the expectation values of the terms
in the qubit Hamiltonian, and estimate the energy of the trial state. d An example of the pulse sequence for the preparation
of a six qubit trial state, where UENT is implemented as a sequence of two-qubit cross resonance gates.

down in a dilution refrigerator, thermally anchored to its
mixing chamber plate at 25 mK. The experiments dis-
cussed here make use of six of these qubits (labeled Q1-
6), highlighted in Fig. 1b. The qubits are coupled via two
superconducting coplanar waveguide (CPW) resonators
that serve as quantum buses, and can be individually
controlled and read out through independent readout res-
onators.

The hardware-e�cient trial states we consider use the
naturally available entangling interactions of the super-
conducting hardware, described by a drift Hamiltonian
H0 that generates the entanglers UENT = exp(�iH0⌧).
These are interleaved with arbitrary single-qubit Euler
rotations which are implemented as a combination of Z
and X gates, given by U

q,i(~✓) = Z
q

✓q,i
1

X
q

✓q,i
2

Z
q

✓q,i
3

, where q

identifies the qubit and i = 0, 1, ...d refers to the depth
position, as depicted in Fig. 1c. The N -qubit trial states
are obtained from the state | 00 . . . 0i, applying d entan-

glers UENT that alternate with N Euler rotations, giving

|�(~✓)i =
NY

q=1

h
U

q,d(~✓)
i
⇥ UENT ⇥

NY

q=1

h
U

q,d�1(~✓)
i

· · ·⇥ UENT ⇥

NY

q=1

h
U

q,0(~✓)
i
| 00...0i. (2)

Since the qubits are all initialized in their ground state
| 0i, the first set of Z rotations of Uq,0(~✓) is not imple-
mented, resulting in a total of p = N(3d � 1) indepen-
dent angles. In the experiment, the evolution time ⌧

and the individual couplings in H0 can be controlled.
However, numerical simulations indicate that accurate
optimizations are obtained for fixed-phase UENT, leav-
ing the p control angles as variational parameters . Our
hardware-e�cient approach does not rely on the accu-
rate implementation of specific two qubit gates and can

2020  Hydrogen chains (HF)
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